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A fast, simplified potential-based approach is presented that estimates the protein-ligand
binding affinity based on the given 3D structure of a protein-ligand complex. This general,
knowledge-based approach exploits structural information of known protein-ligand complexes
extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent
Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force,
PMF). The definition of an appropriate reference state and the introduction of a correction
term accounting for the volume taken by the ligand were found to be crucial for deriving the
relevant interaction potentials that treat solvation and entropic contributions implicitly. A
significant correlation between experimental binding affinities and computed score was found
for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same
target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the
calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki
units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease
complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33
inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of
0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to
empirical scoring functions that show similar or sometimes better correlation with observed
binding affinities, our method does not involve deriving specific parameters that fit the observed
binding affinities of protein-ligand complexes of a given training set. We compared the
performance of the PMF score, Böhm’s score (LUDI), and the SMOG score for eight different
test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF
score performs best. The strength of the new approach presented here lies in its generality as
no knowledge about measured binding affinities is needed to derive atomic interaction
potentials. The use of the new scoring function in docking studies is outlined.

Introduction

The fast and accurate prediction of binding free
energies of putative protein-ligand complexes is crucial
for lead discovery and optimization in structure-based
drug design.1 It is apparent that improved scoring
functions are needed to more accurately identify or
design biologically active molecules that fit a macromo-
lecular target of known 3D structure.2 Several methods
have been developed to calculate binding free energies;
they vary in accuracy and consume computer time
between hours and less than seconds per complex. Force
field based methods calculate binding affinity using
energy functions developed for 3D structure refinements
and molecular dynamics calculations. Of these, free
energy perturbation (FEP) methods,3 linear response
approximation (LRA) in conjunction with FEP or semi-
microscopic methods,4-6 and discretized continuum (DC)
methods7 are capable of calculating absolute and rela-

tive binding free energies within an error range of about
1-4 log Ki units. Although these methods consume
minutes to hours of computing time per complex and
are therefore not fast enough to screen a large number
of compounds against a given protein target, they also
do not offer generally robust predictions since these
methods still depend on critical parametrizations (e.g.,
dielectric constants in DC or van der Waals weighting
coefficients in LRA). As a result, so-called empirical
scoring functions have been developed. They are based
on a model that includes calculating the most important
physical properties of protein-ligand interaction, con-
verting them into computable terms, and optimizing
their coefficients by fitting the derived function to
observed binding constants of a training set of protein-
ligand complexes with known 3D structure.8-16 Empiri-
cal scoring functions as well as force field based scoring
functions have been used in several docking appro-
aches17-20 as well as de novo design programs.9,10 The
advantage of multivariate regression methods that are
used to derive empirical scoring functions lies in its
capability to reconcile many parameters in a model and
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make good predictions within the model range. The
main weakness of empirical scoring functions lies in the
fact that it is unclear to what extent they can be applied
to protein-ligand complexes that were not represented
in the training set. Although Welch and co-workers
reported a docking study where it was found that biotin
docked to streptavidin scored highest in a pool of 80 000
compounds of the ACD,21 this encouraging result ap-
pears to be an exception. Using empirical scoring
functions in blind docking studies, it is usually found
that if the correct binding mode of a ligand is among
the sampled conformations, it is often not ranked the
highest. It appears that the highest ranked configura-
tions often have a root-mean-square (rms) deviation of
2 Å or more from the binding mode found in the crystal
structure.22

A third way to derive a scoring function of protein-
ligand association uses statistical, knowledge-based
methods that have already been shown to be successful
in protein folding studies.23-29 A coarse-grained model
(SMOG) was derived and used in the de novo design of
new compounds.30 Verkhivker and co-workers reported
a free energy function that included ligand-protein
interaction patterns of HIV-1 protease complexes as part
of an energy function that also included terms for
protein/ligand-water interaction, desolvation, isomer-
ization, and entropy.31 However, while the calculated
binding free energies for seven test complexes agreed
well with the observed binding constants, no direct
correlation between the PMF contribution and the
measured binding affinities of the test complexes was
found. Very recently, a knowledge-based scoring func-
tion was proposed that uses atom pair potentials similar
to those derived in this article combined with an
additional term for changes in solvent-accessible surface
area upon protein-ligand binding.32 However, a per-
formance study of this scoring function is not published
yet.

Our previous work focused on a wide range of
methods of calculating relevant biological free energies
in proteins (e.g., binding free energies, redox potentials,
and pKa values) using methods such as free energy
perturbation,33,34 discretized continuum,34,35 linear re-
sponse approximation in combination with semimicro-
scopic approaches,6,36-38 and quantitative structure-
activity relationship (QSAR) studies.39-42 Here we tackle
the long-standing problem of defining a general, reliable,
and fast scoring function for protein-ligand interaction
by using the entire Brookhaven Protein Data Bank43

as a knowledge base and treating solvation and entropic
effects implicitly. The new scoring function is built upon
protein-ligand atom pair interaction potentials. They
can be calculated from structural data alone because
an observed crystallographic complex represents the
optimum placement of the ligand atoms relative to the
protein atoms, subject of course to covalent constraints.
If one considers hundreds of such complexes, there are
literally millions of observed distances between ligand
and protein atoms. The observed distance distribution
of specific atom-type interactions is the fundamental
basis of the scoring method described in this report. In
contrast to empirical methods, it does not rely on fitting
to observed affinities. Nevertheless, the potentials of
mean force (PMF) score can be calculated just as quickly

as the potential interaction energy using a standard
energy function, and that takes only fractions of a
second per complex. A large cutoff for deriving the PMF,
a large number of atom pair types, an appropriate
reference state, and a suitable ligand volume correction
are key elements of the new scoring function.

Method

If one chooses to dissect the protein-ligand binding free
energy into all its physically meaningful contributions and
then tries to evaluate them explicitly (e.g., desolvation,
entropy, electrostatics, and hydrophobic interactions) one faces
the difficult task of balancing large energy terms that add up
to small binding free energies. Moreover, in order to get
reliable estimates for the total binding free energy, it is
important to evaluate all the terms rather than just a subset.44

The problem then becomes that some of them are quite hard
to quantify using available approaches (e.g., entropic contribu-
tions) or are time-consuming (e.g., reorganization energies).
We circumvent this complicated task by deriving simplified
potentials from known structural data to directly estimate the
total protein-ligand binding free energy. Thus we treat all
relevant contributions to the binding free energy implicitly.

The crystal and solution 3D structures of protein-ligand
complexes collected in the Brookhaven Protein Database (PDB)
as well as in proprietary databases provide a tremendous
amount of information about protein-water systems as well
as the specific interaction between proteins and ligands.
Hundreds of different protein-inhibitor structures are avail-
able from the PDB alone. As the number of solved protein-
ligand complexes grows rapidly it becomes possible to use this
structural information to develop an energy function for
protein-ligand interactions and ultimately an energy function
that is able to predict the binding constants of ligands to
proteins or to provide a ranking of binding constants of
different ligands bound to a protein target. There are two basic
assumptions that allow us to derive energy functions from a
set of known structures using concepts of statistical mechanics.
First, it is assumed that the protein-ligand complex is in a
state of thermodynamic equilibrium and that this state retains
the global minimum of the free energy of the complex. Second,
the distribution of the molecules in their microscopic states

Figure 1. Schematic dissection of the protein-ligand-solvent
system into spherical shells centered at two given ligand atoms
i1 and i2. The shells are used to derive the volume correction
terms f Vol•corr

j (r) (eq 14). They also illustrate how different
the volume in a sphere with a radius of 12 Å around a specific
ligand atom can be with respect to the ratio of taken protein
and solvent volume. This ratio directly scales the reference
bulk density term in eq 13 and therefore gives rise to implicitly
taking solvent contributions of the ligand-protein interaction
into account. The protein is shown as filled with vertical lines.
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obeys Boltzmann’s law. That is, there is a connection between
the potential energy of the system and a probability to find a
molecule or a complex of molecules in a certain microscopic
state. Here we use only collected observations of protein-
ligand atom distances to derive a new scoring function: we
neglect all other structural information such as, for instance,
hydrogen bond angles. In analogy to theoretical models used
in protein folding studies,45 it is possible to derive Helmholtz
free energies of protein-ligand atom pair interactions, or PMF,
from a database of protein-ligand complexes in aqueous
solution at atomic resolution.

We are primarily interested in reliably ranking molecules
according to their binding affinity to a biological target rather
than predicting absolute binding energies. Therefore, we make
the additional assumption that the sum over all protein-
ligand atom pair interaction energies can be used as a good
ranking measure for protein-ligand binding constants. Note,
however, that there is no unique thermodynamic path to derive
a total binding free energy of a protein-ligand complex based
on the sum of protein-ligand atom pair interaction free
energies. This is a conceptual disadvantage of our approach.
We showed, however, that a very significant correlation
between the sum of atom pair potentials and total binding free
energy exists, and the sum is therefore a good measure for
estimating binding affinities.

The idea of deriving appropriate PMF has been used before
in protein folding studies by Sippl and co-workers for charac-
terizing arbitrary atom pair interactions of protein atoms,24

and we followed here Sippl’s derivation with a few but
essential changes due to the intermolecular nature of the
protein-ligand interaction (see Appendix).

The protein-ligand interaction free energy (PMF) between
a protein atom of type i and a ligand atoms of type j can be
written as

where kB is the Boltzmann constant, T is the absolute
temperature, and r is the atom pair distance. f Vol•corr

j (r) is the
ligand volume correction factor, Fseg

ij (r) is the number density
of pairs of type ij in a structural database that occur in a
certain radius range that is indicated by “seg”, and Fbulk

ij

represents the distribution of i and j when no interaction
between i and j occurs. The quotient Fseg

ij (r)/Fbulk
ij in eq 1

designates the pair correlation (radial distribution) function
of a protein atom of type i paired with a ligand atom of type j
in a structural database of protein-ligand complexes. The
derivation of eq 1 and especially the definition of the ligand
volume correction factor are given in the Appendix.

The scoring function is defined as the sum over all interatom
interactions of the protein-ligand complex as

where rcut-off
ij is the cutoff radius for the atom type pair ij and

we sum over all protein-ligand atom pairs kl in a database.
A conceptual advantage of our simplified potential approach

is that solvation and entropic terms are treated implicitly. It
is arguable, however, to what extent relevant desolvation of
protein active site and of ligand, as well as the change of
conformational entropy upon complex formation, are captured
in this approach. Ligands bound to a protein binding site are
usually not totally buried in the protein. A considerable part
of the ligand is often exposed to the solvent. We attempt to
take advantage of this fact by converting the degree of ligand
penetration in the protein into implicit recognition of solvation
effects. Since this is an important point of the approach we
illustrate this idea considering the ligand atom i2 in Figure
1. We find that within a radius of 6 Å atom i2 is engulfed by
either ligand atoms or protein atoms. That is, i2 cannot “feel”
how deep it sits in the binding site within this radius. If we
increase the radius, the space available for solvent molecules
is increased. The ratio between the volume occupied by protein
atoms and solvent atoms affects the density Fbulk

ij and there-
fore the depth of the PMF for each atom type pair ij (eq 1).
The PMF become more pronounced (larger extrema) with a
larger portion of V(R) occupied by the solvent. As a result, a
particular protein-ligand interaction at the protein surface
is on average rated higher than one inside the protein. The
overall PMF curve flattens with decreasing cutoff radius R.
The effect of the solvent exposure is, of course, only taken into

Table 1. Ligand Atom Types

CF nonpolar carbon sp3 aliphatic OC negatively charged oxygen (e.g., carboxylate)
CP polar sp3 carbon bonded to an atom other than carbon or hydrogen OA oxygen as hydrogen bond acceptor (e.g., keto, amide oxygen)
cF nonpolar carbon aromatic OE oxygen in an ether bond
cP polar carbon aromatic OR oxygen in planar ring
C3 nonpolar carbon sp2 not aromatic OS oxygen bonded to atoms other than carbon or hydrogen
CW polar carbon sp2 not aromatic (e.g., bonded to carbonyl oxygen) OD oxygen bonded to hydrogen, except water
CO carbon bonded to a negatively charged oxygen P phosphorus
CN carbon bonded to a positively charged nitrogen SA sulfur as hydrogen bond acceptor
C0 sp carbon SD sulfur as hydrogen bond donor
NC positively charged nitrogen (e.g., NH3+ or guanidino group) HL hydrogen
NP planar nitrogen bonded to 2 or 3 carbons but not to a hydrogen Zn zinc

(can occur in a nonaromatic ring) CL chlorine
NA nitrogen as a hydrogen bond acceptor, not in a ring Mn manganese
ND nitrogen as a hydrogen bond donor, not in a ring (e.g., amide nitrogen) Mg magnesium
NR planar nitrogen in a ring structure (e.g., pyridine) F fluorine
N0 sp nitrogen bound to 1 carbon Fe iron
NS nitrogen bound to atoms other than carbon or hydrogen and Br bromine

not of type ND V vanadium

Table 2. Protein Atom Types

CF nonpolar aliphatic carbon (e.g., Câ)
CP polar aliphatic sp2 or sp3 carbon bonded to atoms

other than carbon or hydrogen (e.g., backbone
C or CR)

cF nonpolar carbon aromatic
cP polar carbon aromatic
CO carbon bonded to a negatively charged oxygen
CN carbon bonded to a positively charged nitrogen
NC positively charged nitrogen
ND nitrogen as a hydrogen bond donor (e.g., backbone N,

TRP NE, ASN ND)
NR nitrogen in a planar ring structure (e.g., HIS ND,

HIS NE)
OC negatively charged oxygen
OA oxygen as hydrogen bond acceptor (e.g., backbone O,

ASN OD, GLN OE)
OD oxygen as hydrogen bond donor (e.g., TYR OH, SER

OG, THR OG)
OW water oxygen
SA sulfur as hydrogen bond acceptor (MET SD)
SD sulfur as hydrogen bond donor (CYS SG)
HH hydrogen

Aij(r) ) -kBT ln[f Vol•corr
j (r)

Fseg
ij (r)

Fbulk
ij ] (1)

PMF•score ) ∑
kl

r<rcut-off
ij

Aij(r) (2)
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account in an average sense, since a particular interaction of
type ij can occur at the surface of the protein or inside the
protein matrix as well. That is, the solvation effect in the ij
potential arises from its average exposure to the solvent as
compared to the same measure for all other ij pairs. Hence,
the argument that solvation is included in the potentials arises
from the use of a large cutoff of atom pair interactions that
accounts for the presence or absence of protein atoms around
the ligand. In other words, the small cutoff radii used by
Verkhivker and co-workers31 do not effectively capture solva-
tion effects in the PMF.

As the PMF reflect Helmholtz free energies, entropic
contributions are also captured implicitly. This includes folding
entropy of protein and ligand in the complex conformation.
However, it is not clear to what extent rotational and trans-
lational entropy contributions of the ligand are captured in
our approach and whether there is still a need for additional
solvation and/or entropy terms. Since it is crucial to include
all relevant contributions to free energies in computational
approaches,44 we tried adding additional terms to our ap-
proach. We added solvation terms using the semi-microscopic
protein dipole langevin dipole method4 and terms that com-
pensate for the loss of conformational freedom of the ligand
upon complex formation.46,47 We found that the added terms
did not improve the correlation between calculated and
observed binding free energies. Therefore, we omitted all
additional terms and used a scoring function solely built on
atom pair interaction PMF as given in eqs 1 and 2. Note that
very recently a similar scoring function was proposed that
combines PMF with an additional term for changes in the
solvent-accessible surface area upon ligand binding.32 How-
ever, results are not published yet and therefore cannot be
compared to our scoring function at this time.

To relate the calculated PMF score (eq 2) to an absolute
binding free energy we define a scaling factor ε that stands
for all the different terms that are treated implicitly in our
model,

Implementation of the Method. A set of 16 protein and
34 ligand atom types was defined. The number of types is a
compromise between detailed atom characterization and the
ability to obtain reliable statistics to derive the potentials of
mean force (PMF). The ligand and protein atom types are given
in Tables 1 and 2. We chose entries from the Brookhaven
protein database (PDB) for deriving the potentials of mean
force (eq 1) by applying the following criteria. We searched
for the keyword “complex” in the header, and then removed
all entries that had a resolution below 2.5 Å, were complexed
with RNA or DNA, were theoretical models, included ligands
covalently bound to the protein, or were peptide inhibitors.
This yielded 1269 entries. We took only the first of all those
that had the same second and third letter of the four letter
identification code of the PDB entry because they contain
similar protein structures. This yielded 697 entries. (Compar-
ing the potentials of mean force derived from the set of 1269
structures and those of the set of 697 structures did not show
significant differences.) We then determined which atoms
belonged to the protein and which to the ligand, using an
automated process. Ligand and protein atom types were
automatically assigned by an algorithm similar to that in
BALI48 (I. Muegge, unpublished data). If more than one protein
was present and they were overlaid, the structure was
discarded. If the ligand bond order could not be properly
identified, the structure was discarded. If no atom pair of type
ij was found in a certain segment “seg”, the corresponding
potential of mean force of this segment was set to 3 kcal/mol.
This arbitrary value is slightly above the calculated PMF for
atom pairs found at any distance. If the total number of
occurrences of atom pairs of type ij in all segments was smaller
than 1000, we set Aij(r) ) 0 kcal/mol in all segments. That is,
we ignored the contributions of a particular pair type if it had
statistically insufficient data.

The 697 protein structures from the PDB that were used
for the derivation of the PMF are listed in the Supporting
Information. The derived potentials of mean force are available
as Supporting Information as well.

Results

Details of the Potentials of Mean Force. Table 3
shows the statistics of all protein-ligand atom pair
types in detail. The number of atom pair occurrences
varies greatly between the atom types. The largest
number of atom pairs (250 217) occurred for the interac-
tion between polar aliphatic carbons. For several ligand
atom types there were not enough observations to derive
reliable PMF. This includes spN (N0), spC (C0), Cl, Br,
SD, and metals. To assess the quality of statistics of the
PMF we compared the potentials for the interaction of
i and j with those of j and i in case of a salt bridge.
Figure 2 shows for a statistically moderate case that
the curves for NCOC (the first two letters refer to the
protein atom type; the last two to the ligand atom type)
and OCNC are similar and that the minima occur at
the same atom pair distance. The NCOC potential is
slightly deeper than the OCNC potential. The occur-
rence of salt bridges is relatively rare compared to N-O
hydrogen bonds or carbon-carbon interactions: the
number of NCOC occurrences was 4258 and that of
OCNC only 2788 compared with 32835 NDOA occur-
rences and 38354 cFcF occurrences. PMF curves of other
protein-ligand pair types with higher occurrence rates
and those where protein and ligand atom types were
interchanged are even more indistinguishable (data not
shown). Therefore, we conclude that the statistics are
sufficient for the evaluation of the pair interaction
energies. At any rate, it was found that the degree of
deviation of the complementary PMF is the same as
described by Sippl and co-workers.24 Therefore we did
not apply sparse data correction or smoothing algo-
rithms.

Figure 2 shows examples of the potentials of mean
force as derived from 697 complexes initially chosen
from the Brookhaven protein database (about half of
them were discarded due to different reasons as outlined
in the Method section). There are several notable
properties of the functions that can be observed from
the figure. For the protein nitrogen donor-ligand
oxygen acceptor interactions (NDOA), we see a valley
of favorable interaction at a distance of ∼3 Å followed
by a barrier of ∼1 kcal/mol at ∼4 Å. This pattern
corresponds to the established hydrogen bond between
these atom types. The apparent barrier reflects the
preference for a hydrogen bond at 3 Å, which leaves few
observed interactions at 4 Å. On the other hand, a salt
bridge between a charged nitrogen and charged oxygen
(NCOC) does not exhibit a barrier in the potential,
reflecting the conventional wisdom that electrostatic
interactions are not as sensitive to distances compared
to hydrogen bonds. The minimum for the NCOC inter-
action lies at 3 Å whereas for the protein water-
aliphatic carbon (OWCF) hydrophobic interaction we
observe repulsive contributions up to a distance of 3.4
Å and a small favorable interaction at 4 Å. If one
compares aromatic and aliphatic carbon-carbon inter-
actions, one finds that aromatic carbon interactions tend
to be favorable at shorter distances and their interaction
energies are more favorable than those of aliphatic

∆Gbind ) PMF•score/ε (3)
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interactions. This indicates that an interaction of an
aromatic ring is entropically favored over an aliphatic
chain interacting with the protein. The interaction
between two nitrogen hydrogen bond donors (NDND)
was found to be insignificant, whereas that between
aromatic polar carbon and charged oxygen (cPOC) is
favorable at ∼3.6 Å.

A crucial part of our new approach is the introduction
of the volume correction term (Appendix, eq 14). To
show the large effect of this correction, Figure 3 shows
the volume correction factor f Vol•corr

j (r) as a function of
the atom pair distance of five different ligand atom types
to an arbitrary protein atom type. For short distances
(<4 Å) the correction factor is in the range 2-8. The
effect of a correction factor greater than 1 is that the
PMF become deeper compared to longer distances where
f Vol•corr

j (r) approaches 1.0. That is, f Vol•corr
j (r) affects

only the shape of the PMF and usually not the location
of the extrema.

To include solvation effects implicitly we introduced
a relatively large cutoff of 12 Å in deriving the PMF.
As argued in the Method section, the solvation effect is
captured in the ratio of protein to solvent volume
occupied in a sphere of 12 Å radius around a given
ligand atom j. The cutoff affects the reference state and
therefore the deepness of the PMF. However, when we
use the PMF to calculate a binding score we do not
necessarily have to use the same cutoff. As can be seen
from Figure 2, the statistics of different pair interactions

differ. For instance, the NCOC potential becomes slightly
positive for r > 9 Å. Since the number of interaction
partners increases with r3, this small deviation from
zero would result in large positive contributions even
though it is not quite clear how significant these
contributions are. Hence, for scoring we use another
cutoff that seemed to be optimal at 9 Å for the interac-
tion of all non-carbon protein-ligand interactions. There
is again no reason to apply the same cutoff radius to
carbon-carbon interactions, and one could argue that
hydrophobic interactions are not long-ranged. Therefore,
we use a cutoff of 6 Å for carbon-carbon atom type
interactions. Note that these cutoffs are only statisti-
cally motivated (“noise suppression”) as the relevant
PMF are shown to have reached approximately zero for
all the different interactions at the given cutoff radii.
Choosing different cutoffs up to 12 Å for all the PMF
still showed reasonable but not as good correlation with
the experiment for all the test cases described below.

Scoring Protein-Ligand Complexes. We applied
the scoring function of eq 1 to six test sets of 77 different
protein-ligand complexes taken from the Brookhaven
PDB and an additional test set of 33 inhibitors that had
been modeled into the binding site of the same protein.
The results are presented in Table 4 and Figures 4-10.
The complexes used are referenced in the figure by the
PDB four-letter code (or reference number in case of
HIV-1 protease). If there is more than one compound
bound to the protein, we always used the one that was

Table 3. Logarithm of Protein-Ligand Atom Pair Occurrences in the Databasea

protein atom typesligand
atom types CP CF ND OA cF OW cP HH OC OD NC CO NR CN SA SD

CP 5.4 5.2 5.1 5.1 4.8 4.8 4.4 4.6 4.3 4.3 4.1 4.0 3.9 3.9 3.3 3.2
CF 5.3 5.1 5.0 5.0 4.8 4.5 4.3 4.8 4.1 4.1 3.9 3.8 3.8 3.7 3.3 3.1
cF 5.1 5.0 4.8 4.8 4.6 4.3 4.1 4.5 4.0 4.0 3.8 3.7 3.6 3.5 3.1 3.0
OD 5.1 4.9 4.8 4.8 4.5 4.5 4.2 4.2 4.1 4.0 3.8 3.8 3.6 3.6 3.0 2.9
OS 5.1 4.9 4.8 4.7 4.4 4.4 4.1 3.9 4.0 4.0 3.9 3.7 3.6 3.7 3.0 3.0
cP 5.1 4.9 4.8 4.7 4.5 4.3 4.0 4.2 3.9 3.9 3.8 3.6 3.5 3.6 3.1 2.9
CW 4.9 4.7 4.6 4.5 4.3 4.1 3.9 4.3 3.7 3.7 3.6 3.4 3.4 3.4 2.9 2.7
OA 4.8 4.6 4.5 4.5 4.3 4.1 3.8 4.2 3.7 3.7 3.5 3.4 3.4 3.3 2.8 2.7
OC 4.8 4.6 4.5 4.4 4.2 4.1 3.8 4.0 3.7 3.7 3.6 3.4 3.4 3.4 2.9 2.9
HL 4.8 4.7 4.5 4.5 4.2 3.9 3.8 5.0 3.7 3.6 3.5 3.4 3.2 3.3 2.6 2.4
C3 4.7 4.6 4.4 4.4 4.3 3.8 3.8 4.3 3.5 3.6 3.3 3.2 3.3 3.1 2.8 2.6
NR 4.7 4.6 4.4 4.4 4.2 3.9 3.7 3.8 3.5 3.5 3.4 3.2 3.2 3.2 2.7 2.5
CO 4.6 4.4 4.3 4.2 3.9 3.9 3.6 3.7 3.4 3.4 3.4 3.1 3.2 3.2 2.6 2.6
OE 4.6 4.4 4.3 4.2 4.0 4.0 3.6 3.6 3.5 3.5 3.3 3.2 3.0 3.1 2.4 2.4
CN 4.6 4.4 4.3 4.2 4.0 3.8 3.6 3.3 3.5 3.4 3.3 3.2 3.0 3.1 2.6 2.6
NC 4.6 4.4 4.3 4.2 4.0 3.8 3.5 3.3 3.4 3.4 3.2 3.1 3.0 3.1 2.6 2.6
P 4.5 4.3 4.2 4.2 3.9 3.9 3.5 3.2 3.4 3.4 3.3 3.1 3.1 3.2 2.5 2.4
ND 4.4 4.3 4.1 4.1 3.9 3.7 3.5 4.2 3.3 3.2 3.2 3.0 3.0 3.0 2.5 2.3
NP 4.5 4.3 4.2 4.1 3.8 3.8 3.4 3.4 3.3 3.3 3.2 3.0 2.9 3.0 2.4 2.5
NS 3.9 3.7 3.6 3.5 3.4 3.0 3.0 3.0 2.7 2.8 2.5 2.4 2.6 2.2 1.5 1.7
F 3.5 3.3 3.2 3.1 3.0 2.7 2.4 2.8 2.5 2.3 1.8 2.2 2.0 1.5 1.9 1.4
OR 3.4 3.3 3.1 3.1 2.7 2.7 2.2 2.0 2.2 2.2 2.0 1.9 1.7 1.8 1.3 1.1
SA 3.1 3.0 2.8 2.8 2.5 2.3 2.2 1.0 2.1 1.9 1.7 1.8 1.7 1.5 0.7 1.0
NA 3.1 2.9 2.8 2.8 2.5 2.3 1.8 1.9 2.1 1.9 1.6 1.8 0.8 1.4 1.5 0.7
Br 2.9 2.6 2.6 2.5 2.3 2.1 1.9 0.0 1.7 1.9 1.4 1.4 1.3 1.1 1.0 1.5
C0 2.4 2.4 2.2 2.1 2.3 1.6 1.9 0.0 1.3 1.4 1.1 1.0 1.4 0.9 0.0 1.1
V 2.1 2.0 1.9 1.9 1.6 1.4 1.2 2.6 1.1 0.5 1.3 0.8 0.9 1.0 0.5 0.7
N0 2.2 2.0 1.9 1.8 2.0 1.3 1.4 0.0 1.1 1.1 0.8 0.8 0.9 0.5 0.3 0.0
Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Zn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a log10 of the atom pair occurrences in the set of complexes used to derive the PMF. If the log10 is less than 3.0, the statistics for the
atom type pair are considered insignificant and the interaction is ignored in calculating the score. Atom types are ordered by declining
occurrences.
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indicated in the given reference. Note that interactions
involving hydrogen atoms and water molecules were
omitted. In several cases the dependency of the results
on the interaction with water molecules (as part of the
protein) was included and found to be negligible. The
influence of including hydrogen atoms was not analyzed
in a systematic way as very few of the PDB complexes
have explicit hydrogen atoms attached. Note that the
neglect of hydrogen atoms is a strength of our approach

as it reduces configurational sensitivity as elaborated
in the Discussion section.

The first test set (set 1 in Table 4) contains 16
thrombin and trypsin complexes (Figure 4). The best
scoring complex, 1tmt, is an outlier. When 1tmt is
removed from the test set, the statistics are significantly
improved: R2 ) 0.92, the standard deviation from the
observed binding affinity (SD) becomes 0.73 log Ki units
and the largest deviation (LD) is 1.5 log Ki units. Even
with the outlier included, the statistics of set 1 are still
the best we found, with R2 ) 0.86.

Set 2 (Figure 5, Table 4) contains 14 carboxypeptidase
A and thermolysin complexes and 1 neutrophil collage-
nase complex. The removal of one outlier (the neutrophil
collagenase complex 1mnc) improved the statistics
dramatically. R2 increased from 0.58 to 0.78, and the
SD improved from 2.3 to 1.5 log Ki units.

Set 3 (Figure 6, Table 4) contains 18 L-arabinose
binding protein complexes. Each of the nine crystal
structures contains two different conformations of the
sugar ligand that were treated separately. The correla-
tion with observed data is not as high as for sets 1 and
2, but the SD is only about 0.86 log Ki units. This is a
reflection of the fact that set 3 includes a narrower log
Ki range of about 3 log Ki units compared with 7 and
10 log Ki units for sets 1 and 2, respectively.

Set 4 (Figure 7, Table 4) contains 11 endothiapepsin
complexes that show a very poor correlation. One reason
might be that the size of the inhibitors is relatively large

Figure 2. An arbitrary set of 12 PMF (out of a total of several hundred different PMF) is shown. The four-letter code refers to
the atom pair interaction types, where the first two letters refer to the protein and the last two letters to the ligand (see Tables
1, 2, and the text). To demonstrate the statistical robustness of our method we show for the case of a salt bridge both NC as
protein atom type and OC as ligand atom type (NCOC) and vice versa (OCNC). See text for further details.

Figure 3. The volume correction term f Vol•corr
j (r) (eq 14) is

shown for five indicated ligand atom types as a function of
protein-ligand atom pair distance.
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and differs considerably. In general, a significant cor-
relation was found between the number of heavy atoms
of the ligand and the reciprocal PMF score that allows
for the high correlation between the PMF score of
ligands of different size and observed binding con-
stants.49 However, for large inhibitors the absolute
difference in the number of heavy atoms is also large
and this may lead to unreliable PMF scoring.

Set 5 (Figure 8, Table 4) consists of 17 protein-
inhibitor complexes containing cytochrome P450, FKBP,
HIV-protease, renin, DHFR, galactose binding protein,
thymidylate synthase, retinol binding protein, TIM,
myoglobin, and concanavalin as protein targets. They
were chosen by taking those complexes of the combined
training and test sets of Böhm10 that were not present
in our sets 1-4 and that have a resolution of 2.5 Å or
better. This diverse set exhibits a good correlation
between calculated PMF score and observed binding
affinities. If we include also those complexes that have
crystal resolutions below 2.5 Å (data not shown), we find

them to fit nicely into the plot of Figure 8 with one
drastic outlier, biotin bound to streptavidin (1stp), that
scored about 6 log Ki units less than the observed
binding affinity. This is due to the fact that the calcula-
tions were done by using the 1stp structure from the
PDB that contains only a single streptavidin with a
biotin. Streptavidin, however, is a tetramer, and inter-
actions with a second subunit increase the binding of
biotin by 8 orders of magnitude.

To compare our scoring function to the most widely
used empirical scoring function we analyzed all 39
complexes of the combined training and test sets of
Böhm10 (set 7 of Table 4) that were available to us (his
training set contains 15 modeled complexes unavailable
to us). It should be pointed out here that we were not
aware of an improved scoring function by Böhm16 that
was published only recently and therefore could not be
taken into consideration. We found R2 ) 0.48 and R2 )
0.64, neglecting the biotin/streptavidin outlier (data not
shown). The latter correlation is only slightly worse than

Table 4. Correlation between Experiment and PMF Score for Eight Test Setsa

no. test set figure
no. of

complexes R2 SDa LD
log Ki
range εb

1 serine protease 4 16 0.87 0.96 2.65 7 10.8
1a serine protease w/o 1 outlier 15 0.92 0.72 1.50 7 10.1
2 metalloprotease 5 15 0.58 2.31 6.42 10 10.0
2a metalloprotease w/o 1 outlier 14 0.78 1.47 2.85 10 10.9
3 L-arabinose binding prot. 6 18 (9)c 0.48 0.86 1.43 3 5.5
4 endothiapepsin 7 11 0.22 1.89 3.33 4 6.3
5 othersd 8 17 0.69 1.56 2.32 8 12.2
6 sets 1-5 9 77 0.61 1.84 5.01 12 12.8
6a sets 1-5 w/o 1 outlier 76 0.64 1.70 4.64 12 13.3
6b sets 1, 2, 3, 5 w/o 1 outlier 65 0.77 1.34 3.82 12 12.7
7 Böhm’s training and test setse 39 0.48 2.83 8.95 12 9.3
7a Böhm’s training and test setse w/o 1 outlier 38 0.64 1.91 3.90 12 11.6
8 HIV-1 proteasef 10 33 0.74 0.85 2.12 6 3.0
a The standard deviations (SD) and largest deviations (LD) from the observed affinities are given in log Ki units. b ε was calculated

using eq 3. It represents a scaling factor of the PMF score and does not affect the statistics. ε serves to convert the PMF score into binding
free energies. As such, ε represents all the contributions to the binding free energy that are treated implicitly in our simplified potential
approach. With respect to the generality and predictability of absolute binding constants of our approach, it is especially instructive to
compare the derived ε for different test sets. See discussion in the text. c The crystal structures of nine L-arabinose binding protein complexes
contain two ligand conformations that were treated separately. d This set contains complexes of the combined training and test sets of
Böhm’s paper10 that were not found in test sets 1-4 and show a resolution of 2.5 Å or better. e All available protein-ligand complexes of
Böhm’s training (30) and test (9) sets were used.10 The remaining 15 complexes of his training set were modeled by Böhm and therefore
were not available to us. f The 33 inhibitors taken from Holloway and co-workers50 were placed and minimized in the active site of the
crystal structure of the L-689,502-inhibited HIV-1 protease by using the Merck force field.50

Figure 4. Calculated PMF score as a function of the observed
binding affinity. A set of 16 serine protease complexes taken
from the PDB is shown. The experimental data are taken from
Tables 2 and 6 of ref 14. The results of the statistical analysis
are given in Table 4 (set 1).

Figure 5. Calculated PMF score as a function of the observed
binding affinity. A set of 15 metalloprotease complexes taken
from the PDB is shown. The experimental data are taken from
Table 3 of ref 14. The results of the statistical analysis are
given in Table 4 (set 2).
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the one found by using Böhm’s scoring function (R2 )
0.69) for these 39 complexes that include 30 complexes
of Böhm’s training set. Since our approach does not
involve any fitting to known binding affinities we find
this result very encouraging. The comparison between
Böhm’s scoring function and the PMF score is further
discussed below.

To further evaluate the generality of our scoring
function with respect to diverse sets of complexes, we
combined sets 1-5 into set 6 of 77 diverse protein-
ligand complexes (Figure 9, Table 4). Figure 9 shows a
surprisingly high correlation considering the fact that
the heavy atom numbers of the ligands range between
5 (1mbi) and 94 (4phv) and, for instance, 1fkf with 57
heavy ligand atoms is still predicted to bind better than
4phv in agreement with experiment. The overall results
suggest that one should not use per heavy atom scores
as used in additive statistical methods30 since the effect
of having more atoms in a ligand is compensated for
here by implicit solvation effects due to the large cutoff
in deriving the PMF. Although per heavy atom scores
correlate with the experimental binding constants in our

test sets, the correlation is found to be generally much
lower (R2 lies between 0.2 and 0.4).

Set 8 (Figure 10, Table 4) consists of 33 ligands taken
from Table 1 of a study by Holloway and co-workers
modeled into the crystal structure of the L-689,502-
inhibited HIV-1 protease.50 A significant statistical
correlation between observed binding affinities and
PMF scores was found (R2 ) 0.74) with a low standard
deviation of 0.8 log Ki units from observed binding
constants. Set 8 contains 2 subsets of inhibitors that
vary at only one substitution site each. The results
suggest that the PMF score is especially reliable for
screening similar inhibitors against the same target.

The last column of Table 4 shows the scaling constant
ε for all the test sets. ε was iterated using a regula falsi
method such that the calculated ∆Gbind (eq 3) and the

Figure 6. Calculated PMF score as function of the observed
binding affinity. A set of 18 L-arabinose binding protein
complexes taken from the PDB is shown. The experimental
data are taken from Table 3 of ref 14. The results of the
statistical analysis are given in Table 4 (set 3).

Figure 7. Calculated PMF score as function of the observed
binding affinity. A set of 11 endothiapepsin complexes taken
from the PDB is shown. The experimental data are taken from
Table 6 of ref 14 and Table 1 of ref 13. The results of the
statistical analysis are given in Table 4 (set 4).

Figure 8. Calculated PMF score as a function of the observed
binding affinity. A set of 17 different protein-ligand complexes
taken from the PDB is shown. This set contains all compounds
from the combined training and test sets of Böhm10 that are
not included in the sets 1-4 (Figures 4-7) and have a crystal
structure resolution less than 2.5 Å. The experimental data
are taken from Tables 1 and 3 of ref 10. The results of the
statistical analysis are given in Table 4 (set 5).

Figure 9. Calculated PMF score as function of the observed
binding affinity. The combined sets of Figures 4-8 are shown
(77 protein-ligand complexes taken from the PDB). The
symbols correspond to those used in Figures 4-8. That is, b
depicts serine protease complexes, 2 depicts metalloprotease
complexes, 9 depicts L-arabinose binding proteins, [ depicts
endothiapepsin complexes, and 1 depicts the complexes of set
5. The results of the statistical analysis are given in Table 4
(set 6).
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observed binding affinities showed the same SD and LD
from the linear regression line for the given test set.
While ε was found to be very similar for sets 1, 2, 5, 6,
and 7, it was found to be quite different from those of
sets 3, 4, and 8. The performance of the scoring function
on sets 3 and 4 is poor combined with narrow log Ki
ranges of the test sets. This leads to unreliable regres-
sion lines and may explain the large deviations of ε for
these two test sets compared to ε of the test sets 1, 2, 5,
6, and 7 that show similar ε. However, this does not
explain the different ε for test set 8. Possible reasons
are that the HIV-1 protease inhibitors were modeled
into the protein and not placed optimally with respect
to the PMF score. They also represent smaller structural
changes between the different ligands. Although the
correlation between measured and predicted log Ki’s is
good in test set 8, this finding indicates that the
generality of the approach may be limited. In other
words, the scoring function is expected to be more
reliable for the screening of different ligands against the
same target or for comparing different ligand (and/or
protein) configurations in docking studies as suggested
above. Without knowledge of any observed binding
affinities, the scoring function is able to rank protein-
ligand binding affinities but not reliable in giving
estimates for absolute binding free energies.

In Table 5 we compare our scoring function to the
empirical scoring function of Böhm10 and the knowledge-
based scoring function of SMOG.30 The PMF score
performs best for most of the test sets. This finding
indicates the PMF score function is more general than
the empirical scoring function of Böhm. It also indicates
that a distance-dependent knowledge-based potential,
as compared to the coarse-grained potential of SMOG,
is a powerful feature of our approach that leads to better
correlation between observed and calculated binding
constants. These results are discussed in more detail
below.

Discussion
The generality of the simplified potential approach

presented above is relative, of course, because the
Brookhaven database can be considered as the “training
set” for the scoring function. The most important

difference from training sets of other scoring functions
(besides its size) is, however, that structural information
is converted into free energies without any knowledge
of binding affinities and without any fitting procedures.
The only assumption made is that all the complexes
contain bound ligands crystallized from water, and this
is met since only experimentally measured structures
from the PDB were used.

Although hydrogen atom types can be used in our
approach they were omitted in all test sets. The reason
for that is twofold. First, most of the complexes in the
PDB contain either no hydrogen atoms or mainly polar
hydrogen atoms necessitating that most hydrogen atoms
would have to be modeled. Second, hydrogen atoms are
expected to be much more sensitive to position changes.
Specifically, scoring functions having penalty terms for
hydrogen bond angles, such as that of Böhm,10 are found
to be sensitive to hydrogen positions and sometimes
require minimization procedures to achieve the ap-
propriate configurations. To what extent this insensitiv-
ity of our approach might lead to problems in finding
the right configuration in docking studies remains to
be seen. It should be pointed out, however, that docking
studies using the PMF scoring function seem to be more
reliable than, for instance, force field scoring in DOCK4.
The PMF approach presented here has been imple-
mented as an optional scoring function in DOCK4.18

This docking program is especially created to allow the
user to implement customized scoring functions. One
apparent advantage lies in the implementation of a
simplex algorithm that is not based on the evaluation
of gradients for the configurational optimization. There-
fore, our scoring function can be directly implemented
in DOCK4 in a straightforward way to account for all
intermolecular interactions. Note that for docking pur-
poses the PMF at close distances are replaced by van
der Waals potentials to avoid unfavorable steric interac-
tions in the active site. Also, intramolecular van der
Waals interactions of the ligand are added for docking
purposes. However, the use of these additions to the
scoring function are not needed for scoring purposes of
reasonable protein-ligand complexes and are therefore
not discussed here in detail but presented elsewhere.49

The idea of using simplified potentials for the predic-
tion of binding constants is not new. There is at least
one example reported where PMF are used as part of a
scoring function.31 In principle one can derive PMF from
the much larger body of small-molecule data stored in
the Cambridge database. One of our findings is that the
definition of an appropriate reference state and the use
of large cutoff radii are pivotal to derive physically
meaningful Helmholtz free energies (PMF) that treat
solvent and entropic effects implicitly. The definition of
such a reference state for crystal structures of small
molecules is not obvious and maybe not possible due to
crystal contacts at relatively short distances. The need
of introducing a volume correction factor that accounts
for the ligand volume (intraligand interactions are
omitted) was only acknowledged recently51 and was
found here independently. Taking these crucial ele-
ments of a PMF approach into account leads to results
with significant correlation to experimental data as
demonstrated in this paper. On the other hand, the use
of crystallographic data of small molecules is useful in

Figure 10. Calculated PMF score as a function of the
observed binding affinity. A set of 33 ligands was placed in
the active site of the L-689,502-inhibited HIV-1 protease
structure and minimized by the using the Merck force field.50
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deriving optimal interaction distances between atom
types; in fact this was used for deriving empirical atom
pair interaction potentials in programs such as GRID.52

Indeed there might be a way to combine the advantages
of crystallographic data of small molecules and protein-
ligand complexes for designing a better scoring function,
but this is, again, beyond the scope of this work.

The work of Verkhivker and co-workers31 is closest
to our approach. There are, however, major differences.
Verkhivker and co-workers31 reported a free energy
function including knowledge-based ligand-protein in-
teraction patterns of HIV-1 protease complexes based
on ideas of using potentials of mean force (PMF) in
studies of protein folding.23-29 They derived atom in-
teraction PMF using a small set of 30 HIV and SIV
protein-ligand complexes and only 12 different atom
pair types. Since they sought to treat solvation effects
explicitly, they used a small cutoff of 6-7 Å for the PMF.
Interactions that were found to be occluded by water
molecules were not taken into account. There was no
volume correction reported. By combining these pair
interaction potentials with other explicit entropic and
solvation terms they found good correlation between
calculated and observed binding free energies for 7
HIV-1 inhibitors. Comparing the PMF alone with the
observed binding free energies of these seven complexes
showed no positive correlation. Verkhivker and co-
workers argued that the predictive power of the PMF
approach decreases with increasing number of param-
eters (different atom pair interaction types). We found,
however, that with a relatively large number of param-
eters (several hundred) derived from a large database
the predictive power of the PMF approach is actually
enhanced compared to using a smaller set of atom pair
interaction types (data not shown). This suggests that
an optimal number of parameters for a certain problem
exists and that the number is larger than 100. The PMF
approach may be improved by employing different atom
type definitions. The number of different atom types can
probably not be increased, however, since the statistics
already exclude several atom pair types due to an
insufficient number of occurrences in the PDB.

One encouraging finding is that with smaller changes
in the inhibitor and with smaller ranges of log Ki for
the screened compounds, the statistical predictability
of our scoring function increases. That is, this scoring
function is capable of identifying micromolar leads by
screening large databases. This is much harder to
accomplish than distinguishing nanomolar and micro-
molar compounds in a database. In this respect, this
result is of importance in applying the scoring function
as part of a docking program in virtual screening.49

Table 5 shows a direct comparison between the PMF
score, Böhm’s scoring function, and the SMOG scoring
function. Taking the standpoint that a correlation
between calculation and observation is significant if R2

> 0.5, five of eight sets show significant correlation to
observed binding constants, for Böhm’s scoring function
only three of eight, and for SMOG only two of eight. If
we consider all subsets of Table 5, we find significance
in 10 of 13, 6 of 13, and 4 of 13 sets for the three scoring
functions, respectively. In terms of the standard devia-
tions of the calculated from the observed binding
constants, we find that in five of eight sets the PMF
score shows the lowest SD, in two sets Böhm’s scoring
function shows the lowest SD, and in one set the SMOG
scoring function gives the lowest SD. Böhm’s scoring
function performs best for set 7 that contains 30 of 39
complexes to which it is fitted. Although Böhm’s scoring
function also shows the highest correlation in case of
11 endothiapepsin complexes (set 4), compared to the
other scoring functions this correlation is statistically
insignificant. For a set of 33 modeled HIV-1 protease
inhibitors that differ only at two substitution sites,
Böhm’s scoring function performs significantly worse
than the PMF score. Set 6, which contains 77 different
protein-ligand complexes, gives the best estimate of the
generality of the different scoring functions. Only the
PMF score shows a significant correlation in this case
while Böhm’s method and SMOG fail. Another impor-
tant test set is number 8, which shows how reliably
different modeled ligands are scored. Again, the PMF
score is the only scoring function that shows a signifi-
cant correlation to observed binding constants. While

Table 5. Comparison between PMF Score, Böhm’s Score, and SMOGa

PMF scoreb Böhm’s score SMOGd

no. test set no. of complexes R2 SDd R2 SD R2 SD

1 serine protease 16 0.87 0.96 0.76 1.39 0.76 1.34
1a serine protease w/o 1 outlier 15 0.92 0.72 0.87 0.95 0.80 1.25
2 metalloprotease 15 0.58 2.31 0.41 3.27 0.58 2.29
2a metalloprotease w/o 1 outlier 14 0.78 1.47 0.71 1.39 0.59 2.21
3 L-arabinose binding prot. 18 0.48 0.86 0.00 69.7 0.04 4.06
4 endothiapepsin 11 0.22 1.89 0.39 1.26 0.05 4.18
5 others 17 0.69 1.56 0.53e 2.21e 0.25 4.05
6 sets 1-5 77 0.61 1.84 0.30f 3.47f 0.21 4.43
6a sets 1-5 w/o 1 outlier 76 0.64 1.70 0.34 2.91 0.23 4.41
6b sets 1, 2, 3, 5 w/o 1 outlier 65 0.77 1.34 0.35 3.04 0.23 4.46
7 Böhm’s training and test sets 39 0.48 2.83 0.69e 1.85e 0.21 5.27
7a Böhm’s training and test sets w/o 1 outlier 38 0.64 1.91 0.71e 1.77e 0.29 4.32
8 HIV-1 protease 33 0.74 0.85 0.46 1.62 0.08 4.98
a Sets listed as in Table 4. Standard deviations (SD) of calculated score from observed binding constants are given in log Ki units.

b PMF score results are taken from Table 4. c Böhm’s scoring function as implemented in the Ligand design module of the program package
INSIGHT (MSI) was used unless indicated otherwise. d The SMOG scoring function was implemented using the Supporting Information
of ref 30. Note that we report here the total score as calculated with SMOG. The score per heavy atom (as suggested and used in the
original paper) yields results totally uncorrelated with observed binding constants for all test sets (data not shown). e These data were
calculated using the reported scores from Böhm’s paper.10 f Since the ligand design score calculated for sets 1-4 is different from the
score reported for set 5, we had to convert the scores of sets 1-4 with respect to the score of set 5. To do so we used eq 3, replaced the
PMF score with Böhm’s score, and calculated a factor 1/ε using a regula falsi method such that the standard deviations of the observed
binding constants and calculated scores were equalized.
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Böhm’s scoring function almost reaches significance,
SMOG totally fails. With respect to the argument that
one can fit a scoring function like Böhm’s to a given
protein, it is instructive to comment again on set 6
which contains 30 of the 39 complexes Böhm’s scoring
function was fitted to. Here, Böhm’s scoring function is
the only one showing significant correlation with experi-
ment; the PMF score almost reaches significance, and
SMOG fails. However, removing one extreme outlier
(1stp) in the PMF score (set 7a) shows a much improved
correlation of the PMF score (Note that the streptavidin/
biotin outlier can be explained by the fact that 1stp has
only 1 streptavidin/biotin whereas streptavidin comes
as a tetramer and the biotin interaction with other parts
of the tetramer increases the binding affinities by 8
orders of magnitude). In fact, the results are comparable
to Böhm’s scoring function, in both correlation and
standard deviation.

The predictability of the PMF score was found to be
on the order of 1-2 log Ki units for diverse subsets of
77 different protein-ligand complexes. In comparison,
standard deviations from observed binding constants on
the order of 1 log Ki unit are reported for the training
sets of the best empirical scoring functions.12-14 How-
ever, since these studies do not present large test sets
we do not exactly know how to compare our findings to
theirs. At any rate, however, a standard deviation of
more than 1 log Ki unit would probably not be good
enough for scanning a database in search for micromolar
leads. Fortunately, for a test set of 33 HIV-1 protease
inhibitors modeled to the same protein, the predict-
ability was significantly less than 1 log Ki unit. This
result is very encouraging, and we hope it is representa-
tive for the screening of large sets of compounds against
a particular protein target.

Changing the number of protein-ligand complexes
in the protein database the PMF were derived from did
not change the PMF significantly. Also including or
excluding the numerous peptidic ligands in the PDB did
not change the PMF significantly. However, it is not
clear to what extent the peptidomimetic character of
many ligands in the PDB biases the derived potentials.
The quality of the scoring function can probably not be
improved significantly within a few years by simply
waiting for more structures to be deposited in the PDB
or proprietary databases. There is, however, room for
improvement coming from other directions. First, since
the number of atom type occurrences varies over several
orders of magnitude (Table 3), the choice of atom types
assigned to the protein and ligand atoms is obviously
statistically not optimal. That is, merging, creating, and
deleting atom types may improve the scoring function.
Second, there are several ligand atom types that do not
occur with sufficient frequency to provide a significant
potential of mean force (Table 3). In these cases one
could derive empirical potentials from structural data
of small molecules as is done in the GRID program.52

However, this was not attempted here and needs further
study.

There are other problematic points of the PMF score.
For instance, there is no measure for the directionality
of hydrogen bonds. Only the distances between the
atoms govern the shape of the respective PMF. How-
ever, it is possible to derive PMF not only for distances

but for certain angles as well (hydrogen bond direction-
ality). We did not pursue this idea since it becomes more
complicated to combine all the different types of PMF
to a meaningful measure of binding constants in which
one might be forced to use multivariate fitting methods
(as in empirical scoring functions) to fit these terms to
known binding affinities. Our goal, however, was to
derive a scoring function solely built on structural
information.

Conclusion
A knowledge-based simplified potential approach is

presented to rank the binding affinities of protein-
ligand complexes of given 3D structure. It is able to
estimate the binding energies of sets of different ligands
bound to the same protein target with good correlation
to observed binding constants. The correlation of cal-
culated binding scores of diverse sets of protein-ligand
complexes is also significant and comparable to those
reported for empirical scoring functions (e.g., Böhm10).
Comparing the newly introduced PMF score for eight
test sets containing 77 different protein ligand com-
plexes of the Brookhaven protein database and 33
modeled HIV-1 protease inhibitors to Böhm’s score and
the SMOG score,30 the PMF score performed best. This
finding is very encouraging since, in contrast to empiri-
cal scoring functions, the simplified potential approach
does not involve any fitting of parameters of the scoring
function to observed binding affinities. Thus, the pre-
sented scoring function eliminates the major uncer-
tainty of empirical scoring functions as to what extent
the latter can be applied to protein-ligand complexes
that are not represented in the training set used to
derive the empirical scoring function.

Our scoring function is as fast as empirical scoring
functions; therefore, it can be used for docking large sets
of compounds into a protein binding site. The design of
fast and reliable scoring functions presents a real
challenge for docking programs today and appears to
be the bottleneck for getting reliable conformations of
protein-ligand complexes with given 3D protein struc-
ture. We hope that our scoring function will prove to be
very helpful in solving this long-standing issue. We have
implemented our scoring function into the DOCK4
program.18 Preliminary studies show that the PMF
score performs better than force field scoring in DOCK4
in the case of docking a database of small molecules with
measured binding affinities to the FK506 binding
protein.49
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Appendix
Volume-Corrected Atom Pair Interaction Free

Energies. The Helmholtz free energy A(r) can be
calculated from pair distribution functions g(r) by53

where kB is the Boltzmann constant, T is the absolute
temperature, and r is the atom pair distance. The pair
distribution function gij(r) for a protein-ligand atom
pair of type ij can be calculated from the number density

A(r) ) -kBT ln g(r) (4)
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Fij(r) of occurrences of pairs of type ij at a certain
distance r in a database of protein-ligand complexes

where we sum over all protein-ligand complexes p of
the database and all protein-ligand atom pairs kl of
type ij. δij designates the δ function. The pair distribu-
tion function of a protein atom of type i paired with a
ligand atom of type j reads

The bulk density Fbulk
ij represents the distribution of i

and j when no interaction occurs. The implementation
of number densities in our computational approach is
done by evaluating the following expressions

where F(r,r+∆r)
ij (r) is the number density Fij(r) in a spheri-

cal shell of thickness ∆r that stretches between radii r
and r + ∆r. nbulk

ij and n(r,r+∆r)
ij are the numbers of

protein-ligand atom pair occurrences of type ij in the
sphere with radius R and volume V(R) ) 4/3πR3 and in
the spherical shells with volume V(r,r+∆r)(r) ) 4/3π((r +
∆r)3 - r3), respectively.

In order to calculate the distribution of j if no
interaction with i occurs, one would have to treat the
protein in its complex conformation but internally
relaxed to its unbound state. This hypothetical protein
state is not accessible in a reasonable way. Therefore,
we calculate Fbulk

ij as in eqn 7, assuming that no inter-
actions occur. This is reasonable since the most relevant
short-range interactions are also the most infrequent
ones and the bulk of the ij pairs stem from larger
distances (V ∝ r3) where i and j can be considered to be
noninteracting. Fbulk

ij serves as the reference density
that guarantees that the potentials of mean force will
approach zero with increasing distance between the
atoms. To calculate Fbulk

ij , the volume V(R) of the sample
has to be given. Since the number density Fij(r) is
calculated by analyzing a library of protein-ligand
structures up to a cutoff distance R, the volume would
be that of a sphere with radius R (eq 7). However, we
focus on intermolecular interactions between the protein
and the ligand. For a given ligand atom the interaction
energy to all other ligand atoms is not considered.
Therefore, the spherical reference volume needs to be
corrected by eliminating the volume of the ligand itself.
(In principle, we could take the intraligand interactions
into account, but it is not clear how to include bonded
interactions between ligand atoms. If one decides to
exclude them, one would face conceptually the same
problem of excluding parts of the ligand. Therefore, it
is better to exclude the entire intraligand interaction
and to introduce a reference volume correction that is
computationally easy to implement, as outlined below.)
This leads to significant changes in the potentials of
mean force, similar to the very recently reported effect
of solute volume corrections on pair distribution func-
tions in solution.51

In order to derive an atom pair distance and ligand
atom type dependent volume correction factor f Vol•corr

j (r)
averaged over all protein-ligand complexes in the
database, we define the following terms. The sphere
with radius R is dissected into spherical shells s(r) (s )
1, 2, .., R - 3), where the first shell is actually a sphere
with radius 4 Å and the other shells have a thickness
of 1 Å (Figure 1). This coarse separation ensures that
we have a reasonable number of ligand atoms in each
occupied shell. The average numbers of non-hydrogen
protein atoms in the volume V(R) and in every shell
s(r) are defined as 〈nbulk

P 〉 and 〈ns
P〉, respectively. 〈nbulk

P 〉
was evaluated by scanning the protein database and
averaging over different origins of a sphere with radius
R and different proteins, making sure that the entire
sphere was filled with protein atoms each time. The
〈ns

P〉 were then calculated by the volume ratios of s(r)
and V(R) (Note that 〈ns

P〉 is usually not an integer).
ns

L(pl) and nbulk
L (pl) designate the number of ligand

atoms l of the protein-ligand complex p in the shell s
and in the sphere with radius R, respectively. The
volume correction terms vs

pl and vbulk
pl were calculated

for every ligand atom l of each complex p in the shell s
and in the sphere with radius R, respectively,

In order to calculate the volume correction terms for
specific ligand atoms of type j, we build the average over
all ligand atoms l that are of type j and write

with lj indicating that l is of type j. We average over all
the protein-ligand structures p and get a mean ligand
atom type volume correction in every shell s and in the
bulk, respectively,

In order to smooth the coarse shell model the following
simple procedure was applied. We define another set of
spherical shells called segments seg(r) (seg ) 1, 2, ..,
R/m) with thickness m consecutively separating our
sphere with radius R into R/m segments. m was chosen
to be 0.2 Å. We assign the vs

j to the corresponding vseg
j

and write

The volume-corrected bulk number densities of protein-
ligand atom pair interactions and the number density
in a segment are

Fij(r) ) ∑
pkl

δij(r - rpkl) (5)

gij(r) ) Fij(r)/Fbulk
ij (6)

Fbulk
ij ) ∑

pkl

nbulk
ij

V(R)
and F(r,r+∆r)

ij (r) ) ∑
pkl

n(r,r+∆r)
ij

V(r,r+∆r)(r)
(7)

vs
pl )

〈ns
P〉 - ns

L(pl)

〈ns
P〉

and vbulk
pl )

〈nbulk
P 〉 - nbulk

L (pl)

〈nbulk
P 〉

(8)

vs
pj )

1

Nlj

∑
lj

vs
pl and vbulk

pj )
1

Nlj

∑
lj

vbulk
pl (9)

vs
j )

1

Np
∑

p

vs
pj and vbulk

j )
1

Np
∑

p

vbulk
pj (10)

v̂seg
j )

1

17
∑

seg-8

seg+8

vseg
j (11)
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respectively. Using eqs 6 and 12 the volume-corrected
pair distribution functions are

and we find the distance and ligand atom type depend-
ent volume correction factors of the pair distribution
functions to be

Using eqs 4 and 13 the protein-ligand interaction free
energy between atom types i and j is

Note that while the normalization constants Fbulk
ij have

no effect on energy differences between two states, the
introduction of the volume correction factors f Vol•corr

j (r)
changes the actual shape of the free energy function.
ln f Vol•corr

j (r) approaches zero with increasing r.
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